PREPARATION, PROPERTIES AND APPLICATIONS OF SOME NEW

COMPLEX METAL HYDRIDES OF COPPER, LinCumH(n+m)

E. C. Ashby^{*}, A. B. Goel and J. J. Lin

School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received in USA 27 July 1977; received in UK for publication 31 August 1977)

The chemistry of organocuprates (LiCuR₂) and copper hydride (CuH) has been the subject of considerable current interest because of the many synthetic applications¹⁻³ of these interesting reagents. Although most organocuprates have reasonable stability in the range -20°C to +20°C, the greatest limitation of CuH as a reagent is the poor thermal stability of this compound even at temperatures as low as -80°C.⁴ The ability of CuH to form more thermally stable complexes with pyridine² and PPh₃³ provides insight into the possible synthesis of thermally stable complex metal hydrides of copper. Recently we have demonstrated the existence of some new organocuprates, namely LiCu₂(CH₃)₃ and Li₂Cu(CH₃)₃⁵ by variable temperature NMR studies and have also shown that these reagents are valuable for the methylation of enones and alkyl halides.^{6,7} In view of the unusual chemistry of these reagents, we have been interested in the conversion of the alkylcuprates to the corresponding hydrides in order to study their usefulness as reducing agents in organic chemistry.

We have recently reported the preparation of the first stable complex metal hydride of copper (LiCuH₂) by the reaction of LiCu(CH₃)₂ with LiAlH₄ (eq. 1-2)⁸. Later the preparation of complexes of the type, LiCuHR (where R = alkyl, OBu^t and SR₂), with organic

$$2\text{LiCH}_3 + \text{CuI} \xrightarrow{\text{Et}_2^0} \text{LiCu(CH}_3)_2 + \text{LiI}$$
 (1)

$$\operatorname{LiCu}(\operatorname{CH}_3)_2 + \operatorname{LiA1H}_4 \xrightarrow{\operatorname{Et}_2^0} \operatorname{LiCuH}_2^{\downarrow} + \operatorname{LiA1}(\operatorname{CH}_3)_2^{\operatorname{H}_2}$$
(2)

substrates were reported by several workers.^{9,10} However, the limitations of these reagents is that they are not stable at room temperature and are difficult to prepare.

In the present investigation, we have prepared a series of stable complex metal hydrides of copper with the empirical formula $\operatorname{Li}_{n}\operatorname{Cu}_{m+(n+m)}^{H}$ by the reaction of LiAlH_{4} with the corresponding lithium alkylcuprate (eqs. 3-4) in ether solvent. The reactions were carried out simply by adding CH_{3} Li to CuI in the appropriate ratios in ether at -78°C (eq. 3).

$$(n+1)CH_{3} Li + (m)CuI \xrightarrow{Et_{2}0} Li_{n}Cu_{m}(CH_{3})_{(n+m)} + LiI$$
(3)

$$\operatorname{Li}_{n}^{\operatorname{Cu}}_{m}(\operatorname{CH}_{3})_{(n+m)} + (\frac{n+m}{2})\operatorname{LiAlH}_{4} \xrightarrow{\operatorname{Et}_{2}^{O}} \operatorname{Li}_{n}^{\operatorname{Cu}}_{m}^{H}_{(n+m)} + (\frac{n+m}{2})\operatorname{LiAlH}_{2}(\operatorname{CH}_{3})_{2}$$
(4)

In each case a clear colorless solution resulted in just a few minutes after which time a solution of LiAlH₄ in ether was added and the solution allowed to warm to room temperature with stirring. A white precipitate formed during the warming process which was stabe in ether solution at room temperature (for LiCuH₂, Li₂CuH₃, Li₃CuH₄, Li₄CuH₅ and Li₅CuH₆) for an indefinite period of time or stable at 0°C (for LiCu₂H₃ and Li₂Cu₃H₅) for several hours. The white solids were filtered, washed with ether, analyzed for lithium, copper and hydrogen (gas evolution), x-ray powder patterns were obtained and DTA-TGA recorded (Table I). In this way the following compounds were characterized: LiCu₂H₃, Li₂Cu₃H₅, LiCuH₂, Li₂CuH₃, Li₃CuH₄, Li₄CuH₅ and Li₅CuH₆ with their thermal stabilities ranging from 0° to 140°C (Table I).

Hydride	Analysis	X-Ray Pattern	DTA-TGA
	Lì : Cu : H		(decomp. temp. 0°C)
LiCu2H3	1.00:1.95:2.97	-	-
Li2 ^{Cu3H5}	1.00:1.45:2.42	-	-
LiCuH ₂	1.03:1.00:2.97	-	70, 300, 400
Li2 ^{CuH} 3	2.07:1.00:2.97	4.00w, 3.50m, 2.25d	90, 110, 120, 145 290, 440
Li3CuH4	3.05:1.00:4.01	4.05m, 3.51s, 2.47m 2.13w, 2.02w, 1.57w	110, 120, 140, 308 410, 450
Li ₄ CuH5	3.97:1.00:4.95	4.05m, 3.51s, 2.47m 2.12w, 2.02w, 1.57w	120, 145, 300, 365 430, 480, above 500
Li5CuH6	5.05:1.00:5.92	4.05m, 3.51s, 2.47m, 2.12w, 2.02w, 1.57w	140, 305, 440, 480, above 500

Table	Ι.	Properties	of	LimCi	u ^H (m+n)	Compound s
-------	----	------------	----	-------	----------------------	------------

The question, of course, is whether these products of reported empirical formula are truly single compounds or are they mixtures of LiCuH_2 and CuH (as in the case of LiCu_2H_3 and $\text{Li}_2\text{Cu}_3\text{H}_5$) or LiCuH_2 and LiH (as in the case of Li_2CuH_3 , Li_3CuH_4 , Li_4CuH_5 and Li_5CuH_6) or a mixture of some other lithium copper hydride and either CuH or LiH. Unfortunately, the x-ray powder patterns are not conclusive because the x-rays caused some of the compounds to decompose; however, there are several pieces of evidence that indicate strongly that the products are single compounds. First, if CuH were in admixture with any of these compounds, the compounds would not have been stable above -80°C since CuH decomposes above this temperature. DTA-TGA is also quite conclusive in that each hydride decomposes at a different temperature: LiCu_2H_3 and $\text{Li}_2\text{Cu}_3\text{H}_5$ (~0°), LiCuH_2 (70°), Li_2CuH_3 (90°), Li_3CuH_4

 (110°) , Li_4CuH_5 (120°) , and Li_5CuH_6 (140°) . If LiH were in admixture with any of the hydrides, x-ray analysis would have easily uncovered this fact. X-ray powder diffraction analysis showed that no LiH was present in the samples. Furthermore, LiCuH_2 and Li_4CuH_5 were found to be very soluble in THF. Since CuH and LiH show no solubility in THF it is clear that these hydrides cannot be mixtures of another complex metal hydride of copper containing either LiH or CuH.

The reducing ability of these hydrides towards alkyl halides and tosylates have been demonstrated by carrying out reactions with decyl iodide, bromide, chloride, fluoride and octyl tosylate (Table II). Each lithium copper hydride reduces decyl iodide to yield

Hydride	C10H21I	C10 ^H 21 ^{Br}	C10 ^H 21 ^{C1}	C10 ^H 21 ^F	C ₈ H ₁₇ OTs	
LiCuH ₂	100	85	37	0	65	
Li2CuH3	100	100	35	0	80	
Li3CuH4	100	90	34	0	39	
Li4 ^{CuH} 5	100	100	99	10	99	
Li5CuH6	100	100	80	0	69	

Table II. Reduction of Decyl Halides and Octyl Tosylate by $\lim_{n \to \infty} Cu H_{(n+m)}$

* Yields of $C_{10}^{H}_{22}$ or $C_{8}^{H}_{18}$ were determined by glc using an internal standard. All reactions were carried out over a 24 hr. period in THF at room temperature.

n-decane quantitatively and the yield decreases in the order: I > Br > OTs > Cl > F. It is important to note that the THF soluble lithium copper hydride, Li_4CuH_5 , reduced primary iodide, bromide, chloride and tosylate compounds in quantitative yields and even fluoride in 10% yield. These are very unusual results. The difference in behavior of the various hydrides towards alkyl halides and tosylates is further evidence that the hydrides are all different and not mixtures of LiCuH₂ and LiH or CuH. We are presently studying the stereoselectivity of these new hydrides toward cyclohexanones and their regioselectivity towards enones and are obtaining interesting results that will be reported in more detail later.

Acknowledgement: We are indebted to the National Science Foundation grant no. MPS 7504127 and the Office of Naval Research grant no. N00014-67-A-0419-005AD.

REFERENCES

1. J. F. Normant, Synthesis, 63, (1972); F. H. Posner, Org. Reactions, 19, 1 (1972);

- G. H. Posner, Org. Reactions, 22, 253 (1975).
- 2. J. A. Dilts and D. F. Shriver, J. Amer. Chem. Soc., 90, 5796 (1968).
- S. A. Bezman, M. R. Churchill, J. A. Osborn and J. Wormald, <u>J. Am. Chem. Soc.</u>, <u>93</u>, 2063 (1971); <u>Ihorg. Chem.</u>, <u>11</u>, 1888 (1972).
- 4. Although numerous efforts have been made by ourselves and others to prepare pure CuH by several different routes, the product always decomposed at -80° (the temperature of the reaction mixture) to Cu° + H_2 .
- 5. E. C. Ashby and J. J. Watkins, J. C. S. Chem. Comm., 784 (1976).
- 6. E. C. Ashby, J. J. Lin and J. J. Watkins, J. Org. Chem., (in press).
- 7. E. C. Ashby and J. J. Lin, J. Org. Chem., (in press).
- 8. E. C. Ashby, T. F. Korenowski and R. D. Schwartz, J. C. S. Chem. Comm., 157 (1974).
- 9. R. K. Boeckman, Jr. and R. Michalak, J. Am. Chem. Soc., 96, 1623 (1974).
- 10. S. Masamune, G. S. Bates and P. E. Georghiou, J. Am. Chem. Soc., 96, 3686 (1974).

.